Variable Pitch
Screw Dry Vacuum Pump
Variable Pitch

LKvacuum

SCREW DRY VACUUM PUMP & SYSTEM TECHNOLOGY

Variable Pitch Screw Dry Pump

Advantages

Ultimate Vacuum

· Optimized clearance and continuous compression ensures 0.0075torr vacuum degree with a single pump

Corrosion Resistance

- · Coating material provides excellent corrosion resistance
- · Process specific coatings or platings available
- · Enhanced Corrosion Resistance by the gas ballast

Cooling Effect

- · Hydrodynamic spiral jacket design ensures Excellent heat exchange efficiency
- · Maintains optimum pump-inside temperature

Utility Saving

- · 30% power saving by the variable pitch screw design
- · No extra cooling gas required

LKC150

LKC300

2

LKC400

LKC800

LKC1500

LKH-Series

Hydrodynamic Spiral Jacket Cooling Mechanism

- · Cooling alongside screws through Jacket: Integral heat Exchanger Philosophy for better heat exchange
- · No extra cooling gas required in order to get reduced exhaust temperature and to prevented pump seizure.
- · Direct cooling as standard (External heat Exchanger as an Option)

LKC series Screw Vacuum Pump

Characteristics

Reliable seal structure

- · Triple Sealing System with Lip seal + Gas Purge + Mechanical Seal
- · High performance mechanical seal specifically designed for dry vacuum pump
- · Optimum gas purge operation enhanced leak tightness

Excellent discharge performance

- · Quick exhaust structure
- · Superior liquid handling ability
- · Pulsation reduction of gas emission

Gas ballast nozzle installation

- · Prevent condensation of corrosive vapor
- · Reducing explosive atmosphere

Gear Oil Coolant Jacket

- · Maintains low oil temperature
- · Oil leakage prevention by low temperature and low pressure
- · Maintaining long life time

Vacuum System for Harsh Process

Vacuum Pump for Chemical Process

Benefits

- · No Contamination of Process Stream
- · Deeper Vacuum and More Flexible Operation
- · No Effluent, No Pollution, No Waste Disposal Costs
- · Lower Maintenance Costs
- · Immediate Solvent Recovery at Pump Exhaust
- · Lower Total Cost of Ownership Lower Utility Costs
- · No variation in vacuum resulting from the changing of seasons and Utility

Vacuum Pump for Corrosive Gas

- 12. Reliable seal structure
- 11. IEC Flange Installation
- 10. Gear Oil Coolant Jacket
- 9. Smooth emission structure
- 8. Spiral coolant jacket
- 7. Reliable structure

1. Gas ballast nozzle installation

- Prevent condensation of corrosive vapor
- · Reducing explosive atmosphere

2. Vent nozzle installation

• Ensures smooth drain of the coolant jacket

4. Flushing nozzle installation

- · Inlet purge nozzle composition
- Steam flushing nozzle composition
- Solvent flushing nozzle composition

5. Grease leakage prevention

- Triple single lip seal
- · Applied the optimized grease space

3. Vacuum degree improvement

- Reaches the maximum vacuum degree 0.0075torr
- Increase pumping volume from high vacuum

6. Applied step-by-step compression screw rotor

- Maintains stable temperature inside the pump by step-by-step compression
- 30% power saving by the variable pitch screw design
- · No extra cooling gas required

- 1. Gas ballast nozzle installation
- 2. Vent nozzle installation
- 3. Vacuum degree improvement
- 4. Flushing nozzle installation
- 5. Grease leakage prevention
- 6. Applied step-by-step compression screw rotor

7. Reliable structure

- Sturdy structure design life for 20 years
- Ensures low vibration with wide space

8. Spiral coolant jacket

- Hydrodynamic spiral jacket design ensures Excellent heat exchange efficiency
- Maintains optimum pump-inside temperature

9. Smooth emission structure

- · Quick exhaust structure
- Superior liquid handling ability
- · Pulsation reduction of gas emission

10. Gear Oil Coolant Jacket

- Maintains low oil temperature
- Oil leakage prevention by low temperature and low pressure
- · Maintaining long life time

11. IEC Flange Installation

- Easy installation and replacement
- Rib enhancement for deformation and vibration prevention

12. Reliable seal structure

- · Mechanical seal and lip seal + gas purge applied
- Mounted with a dry vacuum pump dedicated mechanical seal
- Helps to maintain gear oil, process materials and gas tight by applying gas purge with appropriate pressure

Pumping Capacity

Power Consumption

Technical Data

Model		LKC150	LKC300	LKC400	LKC800	LKC1500		
Displacement (50/60Hz)	m3/hr	110/130	250/300	330/400	660/800	1250/1500		
Ultimate pressure	1115/111	110/150	230/300	330/400	000/000	1230/1300		
without Gas Ballast	torr	7.5 X 10 ⁻³	7.5 X 10 ⁻³	7.5 X 10 ⁻³	7.5 X 10 ⁻³	7.5 X 10 ⁻³		
with Gas Ballast	torr	0.01	0.01	0.01	0.01	0.01		
	ton	0.01	0.01	0.01	0.01	0.01		
Motor power(50/60Hz)	1-\^/	2.7	7.5	11	15	20		
Power Requirement	kW	3.7	7.5	11	15	30		
Power Consumption	kW	1.8/3.0	5.0/6.0	7.0/8.6	10.2/12.8	22.5/25.5		
Rotation(50Hz/60Hz)	rpm	2,900/3,500	2,900/3,500	2,900/3,500	2,900/3,500	2,900/3,500		
Process Connection								
Inlet Connection	JIS(ASME)	40A(1 ½")	50A(2")	65A(2 ½")	100A(4")	125A(5")		
Outlet Connection	JIS(ASME)	40A(1 ½")	40A(1 ½")	50A(2")	65A(2 ½")	80A(3")		
Cooling water								
Max. Supply Pressure	Barg	7	7	7	7	7		
Pressure Drop	Bar	1.0	1.0	1.0	1.0	1.0		
Flow Rate	Liter/min	5~10	10~15	10~15	15~20	36~40		
Temperature	℃	5~35	5~35	5~35	5~35	5~35		
Connection	PT(JIS)	½"(15A)	½"(15A)	½"(15A)	½"(15A)	1"(25A)		
Lubricant								
Gear Oil Type		Shell T-68	Shell T-68	Shell T-68	Shell T-68	Shell T-68		
Bearing Grease Type		Mobil 1	Mobil 1	Mobil 1	Mobil 1	Mobil 1		
Seal Type								
High Vacuum(HV) Seal		Single Lip Seal + Single Lip Seal + Single Lip Seal						
Low Vacuum(LV) Seal		Lip Seal & Mechanical Seal + Gas Purge Seal						
Noise Level(50/60Hz)	dB	79/85	79/85	79/85	79/85	79/85		
Vibration (max.)	mm/s	1.8 (4.5)	1.8 (4.5)	1.8 (4.5)	2.8 (4.5)	2.8 (4.5)		
Weight(Bare Shaft)	kg	190	290	370	580	900		

Seal Arrangement

• HV(Suction) : Single Lip Seal + Single Lip Seal + Single Lip Seal

· LV(Discharge): Lip Seal & Mechanical Seal + Gas Purge Seal

· Drive End: Oil Seal

Bearings

· HV(Suction) : Roller Bearing

· LV(Discharge): Angular Double Ball Bearing

· Drive End : Single Ball Bearing

Dimensions

Bare Shaft Dimensions

Unit mm

Model No.	A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	Weight
LKC150	241	280	682	321	92	293	341	70	108	287	47	175	172	14	190
LKC300	395	334	946	398	126	354	410	112	154	439	58	225	208	19	290
LKC400	437	344	1046	414	133	364	428	112	163	492	73	250	239	19	370
LKC800	558	380	1226	482	148	420	505	136	203	599	73	285	248	22	580
LKC1500	640	470	1446	570	196	500	610	175	246	698	95	335	316	27	900

Exhaust Silencer Installation

Unit mm

Model No.	А	В	С	D	Е	F	G	Н		J	K
LKC150	1002	647	780	456	287	108	320	700	600	540	460
LKC300	1322	825	855	526	439	154	405	882	782	624	544
LKC400	1533	855	856	695	492	167	430	1000	900	634	554
LKC800	1712	921	883	786	599	203	473	1030	930	680	600
LKC1500	2030	1164	1390	925	698	246	610	1385	1285	790	710

Material

- 1. Casing
- 2. Screw
- 5. Rear End Plate
- 6. Seals
- 3. Front End Plate
- 4. Front End Cover

- **7.** Bearings
- 8. Timing Gears

- 9. Shaft
- (1) Casing, (3) Front End Plate: Ductile Iron(FCD 400)

Internal: Teflon Coating

External: Painting

(2) Screws: Ductile Iron(FCD 400)

External: Teflon Coating

Coatings:

PTFE Coating: 15µm Thickness PFA Coating: 40µm Thickness

NIFA (Nickel Plated + Teflon Coating)

4) Front End Cover: Ductile Iron(FCD 400)

+ External Painting

(5) Rear End Plate: Ductile Iron(FCD 400)

+ External Painting

Check Valve: Stainless steel body + Teflon Seat

Seal Material

· Lip Seal: PTFE & Graphite(or Polyamide)

Mix in Stainless Steel

· Mechanical Seal:

Rotor: Stainless Steel Bellows with Carbon #5 Face **Stator**: Stainless Steel with Tungsten Carbide Coating

O-ring: Viton or Kalrez

· Oil Seal: Viton

Lubrication

· Protecting Seals, Bearings & Gears

Gear Box: Shell Turbo Oil T68

Rear end bearing: Mobile 1 Grease

Process Application

	LKC–Series Screw Dry Pump	Liquid Ring Pump (LRVP)	Steam Ejector
Distillation	•	•	•
Evaporation	•	•	•
Reaction		•	•
Drying		•	•
Pervaporation		•	
Degassing	•	•	•
Molecular distillation	•	•	•
Concentration		•	•
Crystallization		•	•
Filtration	•	•	
Impregnation		•	
Adsorption		•	
Absorption		•	
Desorption		•	
Deodorization		•	•
Dehydration		•	•
Chemical Process		•	
Pharmaceutical Process		•	
Petrochemical Process		•	
Food Process		•	
Biofuels	•	•	•
Solvent Recovery		•	
Vapor Recovery Unit(VRU)	•	•	
Coating	•	•	•
Vacuum Casting	•	•	•
Central Vacuum	•	•	

Process application: Highly applicable ■ Applicable ■ Energy consumption: Excellent ● Poor ● Very poor ●

LK VACUUM COMPANY